> X

One Laptop per Child Security Specification

Contents

/A [3 {0 Yo LU o 4 o) o

1. Foreword
2. Security and OLPC
3 About this document
4 Principles and goals
a. Principles
b. Goals

(=08 o T2 (0] VA o] o T LW { o o
C. Delivery chain SECUItYccccccumiiiiiiiiiisemmnnnr s annes
D. Arrival at school site and activationccceeciiiiimmniccsc s
E. First DOOL ...
F. Software installation ...
G. Software execution: problem statementccoviiiriiii—"

H. Threat model: bad things that software can docoeeviemmiiiriinnneeens

1. Damaging the machine

2. Compromising privacy

3. Damaging the user's data

4. Doing bad things to other people
5. Impersonating the user

IR o0) (= o3 410 o 1=

P_BIOS_COPY: secondary BIOS protection
P_SF_CORE: core system file protection
P_SF_RUN: running system file protection
P_NET: network policy protection

. P_BIOS_CORE: core BIOS protection
. P_NAND_RL: NAND write/erase protection

1
2
3
4
5
6

Security Sheet March 30, 2007

7. P_NAND_QUOTA: NAND quota

8. P_MIC_CAM: microphone and camera protection

9. P_CPU_RL: CPU rate limiting

10. P_RTC: real time clock protection

11. P_DSP_BG: background sound permission

12. P_X: X window system protection

13. P_IDENT: identity service

14. P_SANDBOX: program jails

15. P_DOCUMENT: file store service

16. P_DOCUMENT_RO

17. P_DOCUMENT_RL.: file store rate limiting

18. P_DOCUMENT_BACKUP: file store backup service

19. P_THEFT: anti-theft protection

20. P_SERVER_AUTH: transparent strong authentication to trusted server
21. (For later implementation) P_PASSWORD: password protection

J. Addressing the threat model ... 27

1. Damaging the machine
2. Compromising privacy
3. Damaging the user's data
4. Doing bad things to other people
5. Impersonating the user
6. Miscellaneous
7. Missing from this list
a. Filesystem encryption
b. Objectionable content filtering

K. Laptop disposal and transfer SeCuritycccccuiiiiirisssmmmmmmmsnnssnssnnnsnnnns 30

I 07 [0 X=7 1 3 Vo IR 0T o L 31

A. Introduction

Security Sheet March 30, 2007 2

1. Foreword

In 1971, 35 years ago, AT&T programmers Ken Thompson and Dennis Ritchie
released the first version of UNIX. The operating system, which started in 1969
as an unpaid project called UNICS, got a name change and some official funding
by Bell Labs when the programmers offered to add text processing support.
Many of the big design ideas behind UNIX persist to this day: popular server
operating systems like Linux, FreeBSD, and a host of others all share much of
the basic UNIX design.

The 1971 version of UNIX supported the following security permissions on user
files:

* Non-owner can change file (write)
* Non-owner can read file

¢ Owner can change file (write)

¢ Owner can read file

» File can be executed

» File is set-uid

These permissions should look familiar, because they are very close to the same
security permissions a user can set for her files today, in her operating system of
choice. What's deeply troubling—almost unbelievable—about these permissions
is that they've remained virtually the only real control mechanism that a user has
over her personal documents today: a user can choose to protect her files from
other people on the system, but has no control whatsoever over what her own
programs are able to do with her files.

In 1971, this might have been acceptable: it was 20 years before the advent of the
Web, and the threat model for most computer users was entirely different than
the one that applies today. But how, then, is it a surprise that we can't stop
viruses and malware now, when our defenses have remained largely unchanged
from thirty-five years ago?

The crux of the problem lies in the assumption that any program executing on a
system on the user's behalf should have the exact same abilities and permissions
as any other program executing on behalf of the same user. 1971 was seven
years before the first ever international packet-switched network came into
existence. And the first wide-area network using TCP/IP, the communication suite
used by the modern Internet, wasn't created until 1983, twelve years after
Thompson and Ritchie designed the file permissions we're discussing. The
bottom line is that in 1971, there was almost no conceivable way a program could
"come to exist" on a computer except if the account owner—the user—physically
transported it to a machine (for instance, on punched tape), or entered it there

Security Sheet March 30, 2007 3

manually. And so the "all or nothing" security approach, where executing
programs have full control over their owner's account, made quite a lot of sense:
any code the user executed, she ipso facto trusted for all practical purposes.

Fast forward to today, and the situation couldn't be more different: the starkest
contrast is perhaps the Web, where a user's web browser executes untrusted
scripting code on just about every web page she visits! Browsers are growing
increasingly complex sandboxing systems that try to restrict the abilities of such
web scripts, but even the latest browser versions are still fixing bugs in their
scripting engine implementations. And don't forget e-mail: anyone can send a
user an executable program, and for many years the users' instinctive reaction
was to open the attachment and run the program. Untrusted code is everywhere,
and the only defense seems to be tedious user training and antivirus software—
the latter assuming it's fully updated, and assuming the antivirus makers have
had time to deconstruct each latest virus and construct a defense for it.

Most technologies and approaches mentioned in the rest of this document do not
represent original research: they have been known in the security literature for
years, some of them have been deployed in the field, and others are being tested
in the lab. What makes the OLPC XO laptops radically different is that they
represent the first time that all these security measures have been carefully put
together on a system slated to be introduced to tens or hundreds of millions of
users. The laptops are also possibly the first time that a mainstream computing
product has been willing to give up compatibility with legacy programs in order to
achieve strong security. As an example, you'll find that talk about anti-virus and
anti-spyware technology is conspicuously absent from this document, because
the Bitfrost security platform on the XO laptops largely renders these issues
moot.

We have set out to create a system that is both drastically more secure and
provides drastically more usable security than any mainstream system currently
on the market. One result of the dedication to usability is that there is only one
protection provided by the Bitfrost platform that requires user response, and even
then, it's a simple 'yes or no' question understandable even by young children.
The remainder of the security is provided behind the scenes. But pushing the
envelope on both security and usability is a tall order, and as we state in the
concluding chapter of this document, we have neither tried to create, nor do we
believe we have created, a "perfectly secure" system. Notions of perfect security
are foolish, and we distance ourselves up front from any such claims.

Security Sheet March 30, 2007 4

2. Security and OLPC

In terms of security, the OLPC XO laptops are a highly unique environment. They
are slated to introduce computers to young children, many in environments that
have had no prior exposure to computing or the Internet.

What's more, OLPC is not targeting small-scale local deployments where it could
easily intervene in the case of security problems with the machines or their
usage; instead, once the machines are released in the wild, drastic changes in
the security model should be considered difficult or impossible.

Plenty of experience exists in locking down user machines, often in corporate or
academic settings. But OLPC has a final constraint that invalidates most of the
current common wisdom: OLPC is, by design, striving to be an eminently
malleable platform, allowing the children to modify, customize, or "hack", their
own machines any way they see fit.

As a result, no one security policy on the computer will satisfy our requirements.
Instead, we will ship and enable by default a stringent policy that's appropriate
even for the youngest user, and which delivers the strongest available
protections. However, we will provide a simple graphical interface for interested
users to disable any of these protections, allowing the user to tailor the security
level to match her interest in hacking her machine.

This approach allows us to be highly secure by default, and protect even the user
who has no conception of digital security. At the same time, it avoids getting in
the way of any user who is becoming more sophisticated, and interested in
increasing her abilities on the machine.

Finally, because we subscribe to constructionist learning theories, we want to
encourage children to all eventually progress to this level of a more sophisticated
user who takes greater liberties with her machine. However, as long as there
exists potential for disaster (i.e. rendering a machine fully inoperable, or incurring
total data loss), this potential serves as a strong deterrent to this progression.
Because of this, in addition to focusing on security by default, we are explicitly
focusing on providing mechanisms for trivial and unintimidating disaster recovery,
such as operating system recovery from multiple sources and data backup to a
central server.

3. About this document
This document follows security throughout the life-cycle of the laptop itself,
starting from the moment a laptop is produced in the factory, to the moment it first

reaches a child, throughout the child's use of the laptop, and finally stopping at
the moment a child wishes to dispose of the laptop. All of this is preceded by a

Security Sheet March 30, 2007 5

short section on our goals and principles, which serves to provide background to
some of the decisions we made, and which might be non-obvious if one thinks of
security in the context of normal laptop and desktop machines.

This document is complete with regard to the OLPC security model, but is
generally non-technical. A separate document is being prepared that
complements this one with fully technical descriptions and commentary.

4. Principles and goals
a. Principles

Open design

The laptop's security must not depend upon a secret design implemented in
hardware or software.

No lockdown

Though in their default settings, the laptop's security systems may impose
various prohibitions on the user's actions, there must exist a way for these
security systems to be disabled. When that is the case, the machine will grant
the user complete control.

No reading required

Security cannot depend upon the user's ability to read a message from the
computer and act in an informed and sensible manner. While disabling a
particular security mechanism may require reading, a machine must be
secure out of the factory if given to a user who cannot yet read.

Unobtrusive security

Whenever possible, the security on the machines must be behind the scenes,
making its presence known only through subtle visual or audio cues, and
never getting in the user's way. Whenever in conflict with slight user
convenience, strong unobtrusive security is to take precedence, though
utmost care must be taken to ensure such allowances do not seriously or
conspicuously reduce the usability of the machines. As an example, if a
program is found attempting to violate a security setting, the user will not be
prompted to permit the action; the action will simply be denied. If the user
wishes to grant permission for such an action, she can do so through the
graphical security center interface.

Security Sheet March 30, 2007 6

b. Goals
No user passwords

With users as young as 5 years old, the security of the laptop cannot depend
on the user's ability to remember a password. Users cannot be expected to
choose passwords when they first receive computers.

No unencrypted authentication

Authentication of laptops or users will not depend upon identifiers that are
sent unencrypted over the network. This means no cleartext passwords of any
kind will be used in any OLPC protocol and Ethernet MAC addresses will
never be used for authentication.

Out-of-the-box security

The laptop should be both usable and secure out-of-the-box, without the need
to download security updates when at all possible.

Limited institutional PKI

The laptop will be supplied with public keys from OLPC and the country or
regional authority (e.g. the ministry or department of education), but these
keys will not be used to validate the identity of laptop users. The sole purpose
of these keys will be to verify the integrity of bundled software and content.
Users will be identified through an organically-grown PKI without a certified
chain of trust—in other words, our approach to PKIl is KCM, or key continuity
management.

No permanent data loss

Information on the laptop will be replicated to some centralized storage place
so that the student can recover it in the even that the laptop is lost, stolen or
destroyed.

Security Sheet March 30, 2007 7

B. Factory production

As part of factory production, certain manufacturing data is written to the built-in
SPI flash chip. The chip is rewritable, but barring hardware tampering, only by a
trusted process that will not damage or modify the manufacturing information.

Manufacturing data includes two unique identifiers: SN, the serial number, and
U#, the randomly-generated UUID. Serial numbers are not assigned in order;
instead, they are chosen randomly from a pool of integers. The manufacturing
process maintains a mapping of the random serial number assigned, to the real,
incremental serial number which was set to 1 for the first laptop produced. This
mapping is confidential but not secret, and is kept by OLPC.

The random mapping's sole purpose is to discourage attempts at using serial
numbers of laptops delivered to different countries for attempting to analyze
countries' purchase volumes.

A laptop's UUID, U#, is a random 32-byte printable ASCII identifier.

In one of the factory diagnostics stages after each laptop's production, the
diagnostics tool will send the complete manufacturing information, including U#,
SN, and factory information, to an OLPC server. This information will be queued
at the factory in case of connectivity issues, and so won't be lost under any
foreseeable circumstances.

At the end of the production line, the laptop is in the 'deactivated' state. This
means it must undergo a cryptographic activation process when powered on,
before it can be used by an end user.

Security Sheet March 30, 2007

C. Delivery chain security

OLPC arranges only the shipment of laptops from their origin factory to each
purchasing country. Shipping and delivery within each country is organized fully
by the country.

Given OLPC production volumes, the delivery chain poses an attractive attack
vector for an enterprising thief. The activation requirement makes delivery theft
highly unappealing, requiring hardware intervention to disable on each stolen
laptop before resale. We give an overview of the activation process below.

Security Sheet March 30, 2007

D. Arrival at school site and activation

Before a batch of laptops is shipped to each school, the country uses OLPC-
provided software to generate a batch of activation codes. This "activation list"
maps each (SN, UUID) tuple to a unique activation code for the referenced
laptop. Activation lists are generated on-demand by the country for each laptop
batch, as the laptops are partitioned into batches destined for specific schools. In
other words, there is no master activation list.

The activation list for a laptop batch is loaded onto a USB drive, and delivered to
a project handler in the target school out of band from the actual laptop shipment.
The handler will be commonly a teacher or other school administrator. The
activation list sent to one school cannot be used to activate any other laptop
batch.

When the activation list USB drive is received, it is plugged into the OLPC-
provided school server, or another server running the requisite software that is
connected to a wireless access point. Whichever server takes on this role will be
called the 'activation server'. An activated XO laptop can be used for this
purpose, if necessary.

After receiving the matching laptop batch, the school's project handler will be
tasked with giving a laptop to each child at the school. When a child receives a
laptop, it is still disabled. The child must power on the laptop within wireless
range of the school's activation server. When this happens, the laptop will
securely communicate its (SN, UUID) tuple to the server, which will return the
activation code for the laptop in question, provided the tuple is found in the
activation list, or an error if it isn't.

Given an invalid activation code or an error, the laptop will sleep for one hour
before retrying activation. If the activation code is valid, the laptop becomes
“activated,” and proceeds to boot to the first-boot screen. A textual activation
code can be entered into the machine manually, if the machine is not activating
automatically for any reason.

Security Sheet March 30, 2007 10

E. First boot

On first boot, a program is run that asks the child for their name, takes their
picture, and in the background generates an EEC key pair. The key pair is initially
not protected by a passphrase, and is then used to sign the child's name and
picture. This information and the signature are the child's 'digital identity".

The laptop transmits the (SN, UUID, digital identity) tuple to the activation server.
The mapping between a laptop and the user's identity is maintained by the
country or regional authority for anti-theft purposes, but never reaches OLPC.

After this, the laptop boots normally, with all security settings enabled.

Security Sheet March 30, 2007 11

F. Software installation

There is a very important distinction between two broad classes of programs that

execute on a running system, and this distinction is not often mentioned in
security literature. There are programs that are purposely malicious, which is to
say that they were written with ill intent from the start, such as with viruses and
worms, and there are programs which are circumstantially malicious but
otherwise benign, such as legitimate programs that have been exploited by an
attacker while they're running, and are now being instrumented to execute code
on behalf of the attacker via code injection or some other method.

This difference is crucial and cannot be understated, because it's a reasonable
assumption that most software running on a normal machine starts benign. In
fact, we observe that it is through exploitation of benign software that most
malicious software is first introduced to many machines, so protecting benign
software becomes a doubly worthy goal.

The protection of benign software is a keystone of our security model. We
approach it with the following idea in mind: benign software will not lie about its
purpose during installation.

To provide an example, consider the Solitaire game shipped with most versions
of Microsoft Windows. This program needs:

* no network access whatsoever

* no ability to read the user's documents

* no ability to utilize the built-in camera or microphone
* no ability to look at, or modify, other programs

Yet if somehow compromised by an attacker, Solitaire is free to do whatever the
attacker wishes, including:

* read, corrupt or delete the user's documents, spreadsheets, music,
photos and any other files

* eavesdrop on the user via the camera or microphone

» replace the user's wallpaper

» access the user's website passwords

* infect other programs on the hard drive with a virus

» download files to the user's machine

» receive or send e-mail on behalf of the user

» play loud or embarrassing sounds on the speakers

The critical observation here is not that Solitaire should never have the ability to
do any of the above (which it clearly shouldn't), but that its creators know it

Security Sheet March 30, 2007

12

should never do any of the above. It follows that if the system implemented a
facility for Solitaire to indicate this at installation time, Solitaire could irreversibly
shed various privileges the moment it's installed, which severely limits or simply
destroys its usefulness to an attacker were it taken over.

The OLPC XO laptops provide just such a facility. Program installation does not
occur through the simple execution of the installer, which is yet another program,
but through a system installation service which knows how to install XO program
bundles. During installation, the installer service will query the bundle for the
program's desired security permissions, and will notify the system Security
Service accordingly. After installation, the per-program permission list is only
modifiable by the user through a graphical interface.

A benign program such as Solitaire would simply not request any special
permissions during installation, and if taken over, would not be able to perform
anything particularly damaging, such as the actions from the above list.

It must be noted here that this system only protects benign software. The
problem still remains of intentionally malicious software, which might request all
available permissions during installation in order to abuse them arbitrarily when
run. We address this by making certain initially-requestable permissions mutually
exclusive, in effect making it difficult for malicious software to request a set of
permissions that easily allow malicious action. Details on this mechanism are
provided later in this document.

As a final note, programs cryptographically signed by OLPC or the individual
countries may bypass the permission request limits, and request any permissions
they wish at installation time.

Security Sheet March 30, 2007 13

G. Software execution: problem statement

The threat model that we are trying to address while the machine is running
normally is a difficult one: we wish to have the ability to execute generally
untrusted code, while severely limiting its ability to inflict harm to the system.

Many computer devices that are seen or marketed more as embedded or
managed computers than personal laptops or desktops (one example is AMD's
PIC communicator) purport to dodge the issue of untrusted code entirely, while
staving off viruses, malware and spyware by only permitting execution of code
cryptographically signed by the vendor. In practice, this means the user is limited
to executing a very restricted set of vendor-provided programs, and cannot
develop her own software or use software from third party developers. While this
approach to security certainly limits available attack vectors, it should be noted it
is pointedly not a silver bullet. A computer that is not freely programmable
represents a tremendous decrease in utility from what most consumers have
come to expect from their computers—but even if we ignore this and focus
merely on the technical qualifications of such a security system, we must stress
that almost always, cryptographic signatures for binaries are checked at load
time, not continually during execution. Thus exploits for vendor-provided binaries
are still able to execute and harm the system. Similarly, this system fails to
provide any protection against macro attacks.

As we mention in the introduction, this severely restricted execution model is
absolutely not an option for the XO laptops. What's more, we want to explicitly
encourage our users, the children, to engage in a scenario certain to give
nightmares to any security expert: easy code sharing between computers.

As part of our educational mission, we're making it very easy for children to see
the code of the programs they're running—we even provide a View Source key
on the keyboard for this purpose—and are making it similarly easy for children to
write their own code in Python, our programming language of choice. Given our
further emphasis on collaboration as a feature integrated directly into the
operating system, the scenario where a child develops some software and
wishes to share it with her friends becomes a natural one, and one that needs to
be well-supported.

Unfortunately, software received through a friend or acquaintance is completely

untrusted code, because there's no trust mapping between people and software:
trusting a friend isn't, and cannot be, the same as trusting code coming from that
friend. The friend's machine might be taken over, and may be attempting to send
malicious code to all her friends, or the friend might be trying to execute a prank,

Security Sheet March 30, 2007 14

http://www.amdboard.com/pic.html

or he might have written—either out of ignorance or malice -- software that is
sometimes malicious.

It is against this background that we've constructed security protections for
software on the laptop. A one-sentence summary of the intent of our complete
software security model is that it "tries to prevent software from doing bad things".
The next chapter explains the five categories of 'bad things' that malicious
software might do, and the chapter after that our protections themselves. And the
chapter after it explains how each protection addresses the threat model.

Security Sheet March 30, 2007 15

H. Threat model: bad things that software can do

There are five broad categories of "bad things" that running software could do, for
the purposes of our discussion. In no particular order, software can attempt to
damage the machine, compromise the user's privacy, damage the user's
information, do "bad things" to people other than the machine's user, and lastly,
impersonate the user.

1. Damaging the machine

Software wishing to render a laptop inoperable has at least five attack vectors. It
may try to ruin the machine's BIOS, preventing it from booting. It may attempt to
run down the NAND chip used for primary storage, which—being a flash chip—
has a limited number of write/erase cycles before ceasing to function properly
and requiring replacement. Successful attacks on the BIOS or NAND cause hard
damage to the machine, meaning such laptops require trained hardware
intervention, including part replacement, to restore to operation. The third vector,
deleting or damaging the operating system, is an annoyance that would require
the machine to be re-imaged and reactivated to run.

Two other means of damaging the machine cause soft damage: they significantly
reduce its utility. These attacks are performance degradation and battery
drainage (with the side note that variants of the former can certainly cause the
latter.)

When we say performance degradation, we are referring to the over-utilization of
any system resource such as RAM, the CPU or the networking chip, in a way that
makes the system too slow or unresponsive to use for other purposes. Battery
drainage might be a side-effect of such a malicious performance degradation
(e.g. because of bypassing normal power saving measures and over-utilization of
power-hungry hardware components), or it might be accomplished through some
other means. Once we can obtain complete power measurements for our
hardware system, we will be aware of whether side channels exist for consuming
large amounts of battery power without general performance degradation; this
section will be updated to reflect that information.

2. Compromising privacy
We see two primary means of software compromising user privacy: the
unauthorized sending of user-owned information such as documents and images

over the network, and eavesdropping on the user via the laptops' built-in camera
and microphone.

Security Sheet March 30, 2007 16

3. Damaging the user's data

A malicious program can attempt to delete or corrupt the user's documents,
create large numbers of fake or garbage-filled documents to make it difficult for
the user to find her legitimate ones, or attack other system services that deal with
data, such as the search service. Indeed, attacking the global indexing service
might well become a new venue for spam that would thus show up every time the
user searched for anything on her system. Other attack vectors undoubtedly
exist.

4. Doing bad things to other people

Software might be malicious in ways that do not directly or strongly affect the
machine's owner or operator. Examples include performing Denial of Service
attacks against the current wireless or wired network (a feat particularly easy on
IPv6 networks, which our laptops will operate on by default), becoming a spam
relay, or joining a floodnet or other botnet.

5. Impersonating the user
Malicious software might attempt to abuse the digital identity primitives on the
system, such as digital signing, to send messages appearing to come from the

user, or to abuse previously authenticated sessions that the user might have
created to privileged resources, such as the school server.

Security Sheet March 30, 2007 17

http://en.wikipedia.org/wiki/Botnet
http://en.wikipedia.org/wiki/FloodNet
http://en.wikipedia.org/wiki/Open_mail_relay
http://en.wikipedia.org/wiki/Open_mail_relay
http://en.wikipedia.org/wiki/IPv6
http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/Denial-of-service_attack

l. Protections

Here, we explain the set of protections that make up the bulk of the Bitfrost
security platform, our name for the sum total of the laptop's security systems.
Each protection listed below is given a concise uppercase textual label beginning
with the letter P. This label is simply a convenience for easy reference, and
stands for both the policy and mechanism of a given protection system.

Almost all of the protections we discuss can be disabled by the user through a
graphical interface. While the laptop's protections are active, this interface cannot
be manipulated by the programs on the system through any means, be it
synthetic keyboard and mouse events or direct configuration file modification.

1. P_BIOS_CORE: core BIOS protection

The BIOS on an XO laptop lives in a 1MB SPI flash chip, mentioned in its section.
This chip's purpose is to hold manufacturing information about the machine
including its (SN, UUID) tuple, and the BIOS and firmware. Reflashing the stored
BIOS is strictly controlled, in such a way that only a BIOS image
cryptographically signed by OLPC can be flashed to the chip. The firmware will
not perform a BIOS reflashing if the battery level is detected as low, to avoid the
machine powering off while the operation is in progress.

A child may request a so-called developer key from OLPC. This key, bound to the
child's laptop's (SN, UUID) tuple, allows the child to flash any BIOS she wishes,
to accommodate the use case of those children who progress to be very
advanced developers and wish to modify their own firmware.

2. P_BIOS_COPY: secondary BIOS protection

The inclusion of this protection is uncertain, and depends on the final size of the
BIOS and firmware after all the desired functionality is included. The SPI flash
offers 1MB of storage space; if the BIOS and firmware can be made to fit in less
than 512KB, a second copy of the bundle will be stored in the SPI. This
secondary copy would be immutable (cannot be reflashed) and used to boot the
machine in case of the primary BIOS being unbootable. Various factors might
lead to such a state, primarily hard power loss during flashing, such as through
the removal of the battery from the machine, or simply a malfunctioning SPI chip
which does not reflash correctly. This section will be updated once it becomes
clear whether this protection can be included.

Security Sheet March 30, 2007 18

http://en.wikipedia.org/wiki/Uuid
http://en.wikipedia.org/wiki/Uuid

3. P_SF_CORE: core system file protection

The core system file protection disallows modification of the stored system image
on a laptop's NAND flash, which OLPC laptops use as primary storage. While
engaged, this protection keeps any process on the machine from altering in any
way the system files shipped as part of the OLPC OS build.

This protection may not be disabled without a developer key, explained in
P_BIOS_ CORE section.

4. P_SF_RUN: running system file protection

Whereas #P_SF_CORE protects the stored system files, #P_SF_RUN protects
the running system files from modification. As long as #P_SF_RUN is engaged,
at every boot, the running system is loaded directly from the stored system files,
which are then marked read-only.

When #P_SF_RUN is disengaged, the system file loading process at boot
changes. Instead of loading the stored files directly, a COW (copy on write) image
is constructed from them, and system files from that image are initialized as the
running system. The COW image uses virtually no additional storage space on
the NAND flash until the user makes modifications to her running system files,
which causes the affected files to be copied before being changed. These
modifications persist between boots, but only apply to the COW copies: the
underlying system files remain untouched.

If #7_SF_RUN is re-engaged after being disabled, the boot-time loading of
system files changes again; the system files are loaded into memory directly with
no intermediate COW image, and marked read-only.

#P_SF_CORE and #P_SF_RUN do not inter-depend. If #7_SF CORE is
disengaged and the stored system files are modified, but #P_SF_RUN is
engaged, after reboot no modification of the running system will be permitted,
despite the fact that the underlying system files have changed from their original
version in the OLPC OS build.

5. P_NET: network policy protection

Each program's network utilization can be constrained in the following ways:

« Boolean network on/off restriction

« token-bucketed bandwidth throttling with burst allowance

« connection rate limiting

« packet destination restrictions by host name, IP and port(s)
« time-of-day restrictions on network use

Security Sheet March 30, 2007 19

http://en.wikipedia.org/wiki/Token_bucket

- data transfer limit by hour or day
« server restriction (can bind and listen on a socket), Boolean and per-
port

Reasonable default rate and transfer limits will be imposed on all non-signed
programs. If necessary, different policies can apply to mesh and access point
traffic. Additional restrictions might be added to this list as we complete our
evaluation of network policy requirements.

6. P_NAND_RL: NAND write/erase protection

A token-bucketed throttle with burst allowance will be in effect for the JFFS2
filesystem used on the NAND flash, which will simply start delaying write/erase
operations caused by a particular program after its bucket is drained. It is
currently being considered that such a delay behaves as an exponential backoff,
though no decision has yet been made, pending some field testing.

A kernel interface will expose the per-program bucket fill levels to userspace,
allowing the implementation of further userspace policies, such as shutting down
programs whose buckets remain drained for too long. These policies will be
maintained and enforced by the system Security Service, a privileged userspace
program.

7. P_NAND_QUOTA: NAND quota

To prevent disk exhaustion attacks, programs are given a limited scratch space in
which they can store their configuration and temporary files, such as various
caches. Currently, that limit is 5MB. Additionally, limits will be imposed on inodes
and dirents within that scratch space, with values to be determined.

This does not include space for user documents created or manipulated by the
program, which are stored through the file store. The file store is explained in a
later section.

8. P_MIC_CAM: microphone and camera protection

At the first level, our built-in camera and microphone are protected by hardware:
an LED is present next to each, and is lit (in hardware, without software control)
when the respective component is engaged. This provides a very simple and
obvious indication of the two being used. The LEDs turning on unexpectedly will
immediately tip off the user to potential eavesdropping.

Security Sheet March 30, 2007 20

http://en.wikipedia.org/wiki/JFFS2#Design
http://en.wikipedia.org/wiki/Inode
http://en.wikipedia.org/wiki/Token_bucket

Secondly, the use of the camera and microphone require a special permission,
requested at install-time as described in its chapter, for each program wishing to
do so. This permission does not, however, allow a program to instantly turn on
the camera and microphone. Instead, it merely lets the program ask the user to
allow the camera or microphone (or both) to be turned on.

This means that any benign programs which are taken over but haven't declared
themselves as needing the camera or microphone cannot be used neither to turn
on either, NOR to ask the user to do so!

Programs which have declared themselves as requiring those privileges (e.g. a
VOIP or videoconferencing app) can instruct the system to ask the user for
permission to enable the camera and microphone components, and if the request
is granted, the program is granted a timed capability to manipulate the
components, e.g. for 30 minutes. After that, the user will be asked for permission
again.

As mentioned in the chapter on installation, programs cryptographically signed by
a trusted authority will be exempt from having to ask permission to manipulate
the components, but because of the LEDs which indicate their status, the
potential for abuse is rather low.

9. P_CPU_RL: CPU rate limiting

Foreground programs may use all of the machine's CPU power. Background
programs, however, may use no more than a fixed amount—currently we're
looking to use 10%—unless given a special permission by the user.

The Sugar Ul environment on the XO laptops does not support overlapping
windows: only maximized application windows are supported. When we talk
about foreground and background execution, we are referring to programs that
are, or are not, currently displaying windows on the screen.

10. P_RTC: real time clock protection

A time offset from the RTC is maintained for each running program, and the
program is allowed to change the offset arbitrarily. This fulfills the need of certain
programs to change the system time they use (we already have a music program
that must synchronize to within 10ms with any machines with which it co-plays a
tune) while not impacting other programs on the system.

Security Sheet March 30, 2007 21

http://en.wikipedia.org/wiki/Voice_over_IP

11. P_DSP_BG: background sound permission

This is a permission, requestable at install-time, which lets the program play

audio while it isn't in the foreground. Its purpose is to make benign programs
immune to being used to play annoying or embarrassing loud sounds if taken
over.

12. P_X: X window system protection

When manually assigned to a program by the user through a graphical security
interface, this permission lets a program send synthetic mouse X events to
another program. Its purpose is to enable the use of accessibility software such
as an on-screen keyboard. The permission is NOT requestable at install-time,
and thus must be manually assigned by the user through a graphical interface,
unless the software wishing to use it is cryptographically signed by a trusted
authority.

Without this permission, programs cannot eavesdrop on or fake one another's
events, which disables key logging software or sophisticated synthetic event
manipulation attacks, where malicious software acts as a remote control for some
other running program.

13. P_IDENT: identity service

The identity service is responsible for generating an ECC key pair at first boot,
keeping the key pair secure, and responding to requests to initiate signed or
encrypted sessions with other networked machines.

With the use of the identity service, all digital peer interactions or communication
(e-mails, instant messages, and so forth) can be cryptographically signed to
maintain integrity even as they're routed through potentially malicious peers on
the mesh, and may also be encrypted in countries where this does not present a
legal problem.

14. P_SANDBOX: program jails

A program on the XO starts in a fortified chroot, akin to a BSD jail, where its
visible filesystem root is only its own constrained scratch space. It normally has
no access to system paths such as /proc or /sys, cannot see other programs on
the system or their scratch spaces, and only the libraries it needs are mapped

Security Sheet March 30, 2007 22

http://en.wikipedia.org/wiki/FreeBSD_jail
http://en.wikipedia.org/wiki/Chroot
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

into its scratch space. It cannot access user documents directly, but only through
the file store service, explained in the next section.

Every program scratch space has three writable directories, called 'tmp', 'conf', and
'data’. The program is free to use these for temporary, configuration, and data
(resource) files, respectively. The rest of the scratch space is immutable; the
program may not modify its binaries or core resource files. This model ensures
that a program may be restored to its base installation state by emptying the
contents of the three writable directories, and that it can be completely
uninstalled by removing its bundle (scratch space) directory.

15. P_DOCUMENT: file store service

Unlike with traditional machines, user documents on the XO laptop are not stored
directly on the filesystem. Instead, they are read and stored through the file store
service, which provides an object-oriented interface to user documents. Similar in
very broad terms to the Microsoft WinFS design, the file store allows rich
metadata association while maintaining traditional UNIX read()/write() semantics for
actual file content manipulation.

Programs on the XO may not use the open() call to arbitrarily open user
documents in the system, nor can they introspect the list of available documents,
e.g. through listing directory contents. Instead, when a program wishes to open a
user document, it asks the system to present the user with a 'file open' dialog. A
copy-on-write version of the file that the user selects is also mapped into this
scratch space—in effect, the file just "appears", along with a message informing
the program of the file's path within the scratch space.

Unix supports the passing of file descriptors (fds) through Unix domain sockets,
so an alternative implementation of #P_DOCUMENT would merely pass in the fd
of the file in question to the calling program. We have elected not to pursue this
approach because communication with the file store service does not take place
directly over Unix domain sockets, but over the D-BUS IPC mechanism, and
because dealing with raw fds can be a hassle in higher-level languages.

Benign programs are not adversely impacted by the need to use the file store for
document access, because they generally do not care about rendering their own
file open dialogs (with the rare exception of programs which create custom
dialogs to e.g. offer built-in file previews; for the time being, we are not going to
support this use case).

Malicious programs, however, lose a tremendous amount of ability to violate the
user's privacy or damage her data, because all document access requires explicit
assent by the user.

Security Sheet March 30, 2007 23

http://en.wikipedia.org/wiki/D-Bus
http://en.wikipedia.org/wiki/Unix_domain_socket
http://en.wikipedia.org/wiki/File_descriptor
http://en.wikipedia.org/wiki/WinFS

16. P_DOCUMENT_RO

Certain kinds of software, such as photo viewing programs, need access to all
documents of a certain kind (e.g. images) to fulfill their desired function. This is in
direct opposition with the #P_DOCUMENT protection which requires user
consent for each document being opened—in this case, each photo.

To resolve the quandary, we must ask ourselves: "from what are we trying to
protect the user?". The answer, here, is a malicious program which requests
permission to read all images, or all text files, or all e-mails, and then sends those
documents over the network to an attacker or posts them publicly, seriously
breaching the user's privacy.

We solve this by allowing programs to request read-only permissions for one type
of document (e.g. image, audio, text, e-mail) at installation time, but making that
permission (#P_DOCUMENT_RO) mutually exclusive with asking for any
network access at all. A photo viewing program, in other words, normally has no
business connecting to the Internet.

As with other permissions, the user may assign the network permission to a
program which requested #P_DOCUMENT_RO at install, bypassing the mutual
exclusion.

17. P_DOCUMENT_RL.: file store rate limiting

The file store does not permit programs to store new files or new versions of old
files with a frequency higher than a certain preset, e.g. once every 30 seconds.

18. P_DOCUMENT_BACKUP: file store backup service

When in range of servers that advertise themselves as offering a backup service,
the laptop will automatically perform incremental backups of user documents
which it can later retrieve. Because of the desire to avoid having to ask children to
generate a new digital identity if their laptop is ever lost, stolen or broken, by
default the child's ECC keypair is also backed up to the server. Given that a
child's private key normally has no password protection, stealing the primary
backup server (normally the school server) offers the thief the ability to
impersonate any child in the system.

For now, we deem this an acceptable risk. We should also mention that the
private key will only be backed up to the primary backup server—usually in the
school—and not any server that advertises itself as providing backup service.
Furthermore, for all non-primary backup servers, only encrypted version of the
incremental backups will be stored.

Security Sheet March 30, 2007 24

http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

19. P_THEFT: anti-theft protection

The OLPC project has received very strong requests from certain countries
considering joining the program to provide a powerful anti-theft service that would
act as a theft deterrent against most thieves.

We provide such a service for interested countries to enable on the laptops. It
works by running, as a privileged process that cannot be disabled or terminated
even by the root user, an anti-theft daemon which detects Internet access, and
performs a call-home request—no more than once a day—to the country's anti-
theft servers. In so doing, it is able to securely use NTP to set the machine RTC
to the current time, and then obtain a cryptographic lease to keep running for
some amount of time, e.g. 21 days. The lease duration is controlled by each
country.

A stolen laptop will have its (SN, UUID) tuple reported to the country's OLPC
oversight body in charge of the anti-theft service. The laptop will be marked
stolen in the country's master database.

A thief might do several things with a laptop: use it to connect to the Internet,
remove it from any networks and attempt to use it as a standalone machine, or
take it apart for parts.

In the former case, the anti-theft daemon would learn that the laptop is stolen as
soon as it's connected to the Internet, and would perform a hard shutdown and
lock the machine such that it requires activation, described previously, to function.

We do not expect the machines will be an appealing target for part resale. Save
for the custom display, all valuable parts of the XO laptops are soldered onto the
motherboard.

To address the case where a stolen machine is used as a personal computer but
not connected to the Internet, the anti-theft daemon will shut down and lock the
machine if its cryptographic lease ever expires. In other words, if the country
operates with 21-day leases, a normal, non-stolen laptop will get the lease
extended by 21 days each day it connects to the Internet. But if the machine does
not connect to the Internet for 21 days, it will shut down and lock.

Since this might present a problem in some countries due to intermittent Internet
access, the leases can either be made to last rather long (they're still an effective
theft deterrent even with a 3 month duration), or they can be manually extended
by connecting a USB drive to the activation server. For instance, a country may
issue 3-week leases, but if a school has a satellite dish failure, the country's
OLPC oversight body may mail a USB drive to the school handler, which when
connected to the school server, transparently extends the lease of each
referenced laptop for some period of time.

Security Sheet March 30, 2007 25

http://en.wikipedia.org/wiki/Uuid
http://en.wikipedia.org/wiki/Real-time_clock
http://en.wikipedia.org/wiki/Network_Time_Protocol
http://en.wikipedia.org/wiki/Daemon_(computer_software)

The anti-theft system cannot be bypassed as long as #P_SF_CORE is enabled
(and disabling it requires a developer key). This, in effect, means that a child is
free to do any modification to her machine's userspace (by disabling
#P_SF_RUN without a developer key), but cannot change the running kernel
without requesting the key. The key-issuing process incorporates a 14-day delay
to allow for a slow theft report to percolate up through the system, and is only
issued if the machine is not reported stolen at the end of that period of time.

20. P_SERVER_AUTH: transparent strong authentication to trusted server

When in wireless range of a trusted server (e.g. one provided by OLPC or the
country), the laptop can securely respond to an authentication challenge with its
(SN, UUID) tuple. In addition to serving as a means for the school to exercise
network access control—we know about some schools, for instance, that do not
wish to provide Internet access to alumni, but only current students—this
authentication can unlock extra services like backup and access to a
decentralized digital identity system such as OpenlD.

OpenlD is particularly appealing to OLPC, because it can be used to perpetuate
passwordless access even on sites that normally require authentication, as long
as they support OpenlID. The most common mode of operation for current
OpenlD identity providers is to request password authentication from the user.
With an OpenlID provider service running on the school server (or other trusted
servers), logins to OpenlD-enabled sites will simply succeed transparently,
because the child's machine has been authenticated in the background by
#P_SERVER_AUTH.

21. P_PASSWORD: password protection (For later implementation)
It is unclear whether this protection will make it in to generation 1 of the XO
laptops. When implemented, however, it will allow the user to set a password to

be used for her digital identity, booting the machine, and accessing some of her
files.

Security Sheet March 30, 2007 26

http://en.wikipedia.org/wiki/OpenID
http://en.wikipedia.org/wiki/Uuid

J. Addressing the threat model

We look at the five categories of "bad things" software can do as listed in the
corresponding chapter, and explain how protections listed in their chapter help.
The following sections are given in the same order as software threat model
entries in their chapter.

1. Damaging the machine

#P_BIOS_CORE ensures the BIOS can only be updated by BIOS images
coming from trusted sources. A child with a developer key may flash whichever
BIOS she pleases, though if we are able to implement #P_BIOS_COPY, the
machine will remain operational even if the child flashes a broken or garbage
BIOS. Programs looking to damage the OS cannot do so because of
#P_SANDBOX and #P_SF_RUN. Should a user with #P_SF_RUN disabled be
tricked into damaging her OS or do so accidentally, #°P_SF_CORE enables her to
restore her OS to its initial (activated) state at boot time.

Programs trying to trash the NAND by exhausting write/erase cycles are
controlled through #P_NAND_RL, and disk exhaustion attacks in the scratch
space are curbed by #P_NAND_QUOQOTA. Disk exhaustion attacks with user
documents are made much more difficult by #P_ DOCUMENT_RL.

CPU-hogging programs are reined in with #P_CPU_RL. Network-hogging
programs are controlled by policy via #P_NET.

2. Compromising privacy

Arbitrary reading and/or sending of the user's documents over the network is
curbed by #P_DOCUMENT, while tagging documents with the program that
created them addresses the scenario in which a malicious program attempts to
spam the search service. Search results from a single program can simply be
hidden (permanently), or removed from the index completely.

#P_DOCUMENT_RO additionally protects the user from wide-scale privacy
breaches by software that purports to be a "viewer" of some broad class of
documents.

#P_MIC_CAM makes eavesdropping on the user difficult, and #P_X makes it
very hard to steal passwords or other sensitive information, or monitor text entry
from other running programs.

Security Sheet March 30, 2007 27

3. Damaging the user's data

File store does not permit programs to overwrite objects such as e-mail and text
which aren't opaque binary blobs. Instead, only a new version is stored, and the
file store exposes a list of the full version history. This affords a large class of
documents protection against deletion or corruption at the hands of a malicious
program—which, of course, had to obtain the user's permission to look at the file
in question in the first place, as explained in #7_DOCUMENT.

For binary blobs—videos, music, images—a malicious program in which the user
specifically opens a certain file does have the ability to corrupt or delete the file.
However, we cannot protect the user from herself. We point out that such deletion
is constrained to only those files which the user explicitly opened. Furthermore,
#P_DOCUMENT_BACKUP allows a final way out even in such situations,
assuming the machine came across a backup server (OLPC school servers
advertise themselves as such).

4. Doing bad things to other people

XO laptops will be quite unattractive as spam relays or floodnet clients due to
network rate and transfer limits imposed on all non-signed programs by #P_NET.
Despite the appeal of the XO deployment scale for spamming or flooding, we
expect that a restriction to generally low-volume network usage for untrusted
software—coupled with the great difficulty in writing worms or self-propagating
software for XO machines—uwill drastically reduce this concern.

5. Impersonating the user

The design of the identity service, #P_IDENT, does not allow programs to ever
come in direct contact with the user's cryptographic key pair, nor to inject
information into currently-open sessions which are using the identity service for
signing or encryption.

6. Miscellaneous

In addition to the protections listed above which each address some part of the
threat model, permissions #P_RTC and #P_THEFT combine to offer an anti-theft
system that requires non-trivial sophistication (ability to tamper with on-board
hardware) to defeat, and #P_DSP_BG provides protection against certain types
of annoying malware, such as the infamous 1989 Yankee Doodle virus.

Security Sheet March 30, 2007 28

http://en.wikipedia.org/wiki/FloodNet
http://en.wikipedia.org/wiki/Open_mail_relay
http://en.wikipedia.org/wiki/Binary_large_object

7. Missing from this list

At least two problems, commonly associated with laptops and child computer
users respectively, are not discussed by our threat model or protection systems:
hard drive encryption and objectionable content filtering / parental controls.

a. Filesystem encryption

While the XO laptops have no hard drive to speak of, the data encryption
question applies just as well to our flash primary storage. The answer consists of
two parts: firstly, filesystem encryption is too slow given our hardware. The XO
laptops can encrypt about 2-4 MB/s with the AES-128 algorithm in CBC mode,
using 100% of the available CPU power. This is about ten times less than the
throughput of the NAND flash chip. Moving to a faster algorithm such as RC4
increases encryption throughput to about 15 MB/s with large blocks at 100% CPU
utilization, and is hence still too slow for general use, and provides questionable
security. Secondly, because of the age of our users, we have explicitly designed
the Bitfrost platform not to rely on the user setting passwords to control access to
her computer. But without passwords, user data encryption would have to be
keyed based on unique identifiers of the laptop itself, which lends no protection to
the user's documents in case the laptop is stolen.

Once the Bitfrost platform supports the #P_PASSWORD protection, which might
not be until the second generation of the XO laptops, we will provide support for
the user to individually encrypt files if she enabled the protection and set a
password for herself.

b. Objectionable content filtering
The Bitfrost platform governs system security on the XO laptops. Given that
"objectionable content" lacks any kind of technical definition, and is instead a

purely social construct, filtering such content lies wholly outside of the scope of
the security platform and this document.

Security Sheet March 30, 2007 29

http://en.wikipedia.org/wiki/Rc4
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

K. Laptop disposal and transfer security

The target lifetime of an XO laptop is five years. After this time elapses, the
laptop's owner might wish to dispose of the laptop. Similarly, for logistical
reasons, a laptop may change hands, going from one owner to another.

A laptop re-initialization program will be provided which securely erases the
user's digital identity and all user documents from a laptop. When running in
"disposal" mode, that program could also be made to permanently disable the
laptop, but it is unclear whether such functionality is actually necessary, so there
are no current plans for providing it.

Security Sheet March 30, 2007 30

L. Closing words

In Norse mythology, Bifrost is the bridge which keeps mortals, inhabitants of the
realm of Midgard, from venturing into Asgard, the realm of the gods. In effect,
Bifrost is a powerful security system designed to keep out unwanted intruders.

This is not why the OLPC security platform's name is a play on the name of the
mythical bridge, however. What's particularly interesting about Bifrdst is a story
that 12th century Icelandic historian and poet Snorri Sturluson tells in the first part
of his poetics manual called the Prose Edda. Here is the relevant excerpt from
the 1916 translation by Arthur Gilchrist Brodeur:

Then said Gangleri
"What is the way to heaven from earth?"
Then Harr answered, and laughed aloud

"Now, that is not wisely asked; has it not been told thee, that the gods made a
bridge from earth, to heaven, called Bifrost? Thou must have seen it; it may
be that ye call it rainbow.' It is of three colors, and very strong, and made with
cunning and with more magic art than other works of craftsmanship. But
strong as it is, yet must it be broken, when the sons of Muspell shall go forth
harrying and ride it, and swim their horses over great rivers; thus they shall
proceed."

Then said Gangleri

"To my thinking the gods did not build the bridge honestly, seeing that it could
be broken, and they able to make it as they would."

Then Harr replied

"The gods are not deserving of reproof because of this work of skill: a good
bridge is Bifrdst, but nothing in this world is of such nature that it may be
relied on when the sons of Muspell go a-harrying."

This story is quite remarkable, as it amounts to a 13th century recognition of the
idea that there's no such thing as a perfect security system.

To borrow Sturluson's terms, we believe we've imbued the OLPC security system
with cunning and more magic art than other similar works of craftmanship—but
not for a second do we believe we've designed something that cannot be broken
when talented, determined and resourceful attackers go forth harrying. Indeed,
this was not the goal. The goal was to significantly raise the bar from the current,
deeply unsatisfactory, state of desktop security. We believe Bitfrost accomplishes
this, though only once the laptops are deployed in the field will we be able to tell
with some degree of certainty whether we have succeeded.

Security Sheet March 30, 2007 31

http://en.wikipedia.org/wiki/M?spell
http://en.wikipedia.org/wiki/Bifr?st
http://en.wikipedia.org/wiki/M?spell
http://en.wikipedia.org/wiki/Bifr?st
http://www.sacred-texts.com/neu/pre/index.htm
http://en.wikipedia.org/wiki/Prose_Edda
http://en.wikipedia.org/wiki/Snorri_Sturluson
http://en.wikipedia.org/wiki/Bifr?st

Security Sheet

March 30, 2007

32

	One Laptop per Child Security Specification
	Contents
	A. Introduction 	 3
	B. Factory production 	 8
	C. Delivery chain security 	 9
	D. Arrival at school site and activation 	 10
	E. First boot 	 11
	F. Software installation 	 12
	G. Software execution: problem statement 	 14
	H. Threat model: bad things that software can do 	 15
	I. Protections 	 18
	J. Addressing the threat model 	 27
	K. Laptop disposal and transfer security 	 30
	L. Closing words 	 31
	A. Introduction
	1. Foreword
	2. Security and OLPC
	3. About this document
	4. Principles and goals
	a. Principles
	B. Factory production
	C. Delivery chain security
	D. Arrival at school site and activation
	E. First boot
	F. Software installation
	G. Software execution: problem statement
	H. Threat model: bad things that software can do
	1. Damaging the machine
	2. Compromising privacy
	3. Damaging the user's data
	4. Doing bad things to other people
	5. Impersonating the user
	I. Protections
	1. P_BIOS_CORE: core BIOS protection
	2. P_BIOS_COPY: secondary BIOS protection
	3. P_SF_CORE: core system file protection
	4. P_SF_RUN: running system file protection
	5. P_NET: network policy protection
	6. P_NAND_RL: NAND write/erase protection
	7. P_NAND_QUOTA: NAND quota
	8. P_MIC_CAM: microphone and camera protection
	9. P_CPU_RL: CPU rate limiting
	10. P_RTC: real time clock protection
	11. P_DSP_BG: background sound permission
	12. P_X: X window system protection
	13. P_IDENT: identity service
	14. P_SANDBOX: program jails
	15. P_DOCUMENT: file store service
	16. P_DOCUMENT_RO
	17. P_DOCUMENT_RL: file store rate limiting
	18. P_DOCUMENT_BACKUP: file store backup service
	19. P_THEFT: anti-theft protection
	20. P_SERVER_AUTH: transparent strong authentication to trusted server
	21. P_PASSWORD: password protection (For later implementation)
	J. Addressing the threat model
	1. Damaging the machine
	2. Compromising privacy
	3. Damaging the user's data
	4. Doing bad things to other people
	5. Impersonating the user
	6. Miscellaneous
	7. Missing from this list
	a. Filesystem encryption
	b. Objectionable content filtering
	K. Laptop disposal and transfer security
	L. Closing words

