

How to Write a Reliable
Collaborative Activity
Without Even Trying

An optimistic look at what we can do to
make writing collaborative software easy.

Really easy.

Ben Schwartz
Volunteer, Harvard

What is collaboration?

Unified abstract state.

“If two people are working on two different
documents, they're not collaborating.”

UserUser

View

UserUser

ViewModel

Story: Buggy Sharing

What does Telepathy guarantee?

Integrity

Causality

What does it not guarantee?

Nonexistence of parallel universes

Message delivery across split+merge

(Netsplit!)

StopWatch

Every button click generates an Event.
e.g. (“Pause”, 1207194405.190577072)

Each stopwatch is a state machine over
Events.

The order in which Events are received
does not matter.

When users join or merge, they get sent the
history.

StopWatch-1 Control Flow

UserUser

View

Model Controller

Telepathy

It works!

but hey, who put this D-Bus call in my
perfectly good program logic! Now it's all

ugly.

Yuck.

Hard to write. Not reusable.

Problem: You hate networking code.

Solution: Put it in a library.

StopWatch-3 Control Flow

UserUser

View Model

AddOnlySortedSet Telepathy

Distributed D-Bus Objects

Original idea: 3 Kinds of DObjects

1. Unordered. No ordering.
Archetype: AddOnlySet

2. Causal. There is a total order, but
messages may arrive out of order.

Archetype: Distributed Dict

3. Strongly Ordered: Global lock to enforce
ordering.

Archetype: Card Game

Realization #1

CausalObject can be implemented as a
layer over UnorderedObject.

Strongly Ordered is hard (see PAXOS).

You can do almost anything with Unordered
and Causal!

dobject.py

Provides: HighScore, AddOnlySet,
AddOnlySortedSet, CausalDict, Latest

(coming soon: DstringIO, a new name)

Realization #2

D-Object is perfect for offline collaboration:

No merge ever fails.
Shared copies never diverge.

Vision

Activities store state in objects provided by
DObject. DObject handles the rest:

tracking Joins and Quits
syncing with an upstream server

serializing to the datastore
providing an Undo GUI

Criticism: Efficiency

Space Efficiency:
Naïve DObjects might keep every message.
Solution: Keep only what is necessary to
interpret future messages (already done).

Network Efficiency:
Current implementation broadcasts too
much. O(N) join, O(N^2) “unsplit”. Better
behavior is possible.

Criticism: Power

“My collaboration can't be expressed as a
set of independent messages.”

Perhaps.

(If you don't like it, you don't have to use it.)

dobject.py Unordered API

handler.send(msg): broadcast a message

receive_message(msg): accepts and
processes a message sent via

handler.send().

 get_history(): returns an encoded copy of
all non-obsolete state

 add_history(state): accept and process
the state object returned by get_history()

dobject.py Causal API

Exactly the same, except:
handler.send(msg) returns an index for the

message

receive_message(msg, index)

The handler generates each index as a
tuple: (monotonically increasing int, random

64-bit tiebreaker)

CausalDict: Interface

Three components:
1. Complete standard python dict interface
2. CausalObject interface

- Requires that CausalDict constructor
take a CausalHandler
3. Callbacks

- When someone else makes a change,
the callback is triggered.

CausalDict: Implementation
2 Messages:
(ADD, key, value), index
(DELETE, key), index

ADD:
if not key in ind or ind[key] < index:

d[key] = value; ind[key] = index

DELETE:
if not key in ind or ind[key] < index:

del d[key]; ind[key] = index

DELETE works even if it arrives before ADD

CausalDict: Implementation

CausalDict.get_history() returns a
serialization including both d and ind.

CausalDict can forget deleted values, but
not deleted keys.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

