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What is collaboration?

Unified abstract state.

“If two people are working on two different 
documents, they're not collaborating.”
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Story: Buggy Sharing



  

What does Telepathy guarantee?

Integrity

Causality



  

What does it not guarantee?

Nonexistence of parallel universes

Message delivery across split+merge

(Netsplit!)



  

StopWatch

Every button click generates an Event.
e.g. (“Pause”, 1207194405.190577072)

Each stopwatch is a state machine over 
Events.

The order in which Events are received 
does not matter.

When users join or merge, they get sent the 
history.
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It works!

but hey, who put this D-Bus call in my 
perfectly good program logic!  Now it's all 

ugly.

Yuck.

Hard to write.  Not reusable.



  

Problem: You hate networking code.

Solution: Put it in a library.



  

StopWatch-3 Control Flow
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Distributed D-Bus Objects

Original idea: 3 Kinds of DObjects

1. Unordered.  No ordering.
Archetype: AddOnlySet

2. Causal.  There is a total order, but 
messages may arrive out of order.

Archetype: Distributed Dict

3. Strongly Ordered: Global lock to enforce 
ordering.

Archetype: Card Game



  

Realization #1

CausalObject can be implemented as a 
layer over UnorderedObject.

Strongly Ordered is hard (see PAXOS).

You can do almost anything with Unordered 
and Causal!



  

dobject.py

Provides: HighScore, AddOnlySet, 
AddOnlySortedSet, CausalDict, Latest

(coming soon: DstringIO, a new name)



  

Realization #2

D-Object is perfect for offline collaboration:

No merge ever fails.
Shared copies never diverge.



  

Vision

Activities store state in objects provided by 
DObject. DObject handles the rest:

tracking Joins and Quits
syncing with an upstream server

serializing to the datastore
providing an Undo GUI



  

Criticism: Efficiency

Space Efficiency:
Naïve DObjects might keep every message.
Solution: Keep only what is necessary to 
interpret future messages (already done).

Network Efficiency:
Current implementation broadcasts too 
much.  O(N) join, O(N^2) “unsplit”.  Better 
behavior is possible.



  

Criticism: Power

“My collaboration can't be expressed as a 
set of independent messages.”

Perhaps.

(If you don't like it, you don't have to use it.)



  

dobject.py Unordered API

handler.send(msg): broadcast a message
    

receive_message(msg): accepts and 
processes a message sent via 

handler.send().
    

    get_history(): returns an encoded copy of 
all non-obsolete state

    
    add_history(state): accept and process 
the state object returned by get_history()



  

dobject.py Causal API

Exactly the same, except:
handler.send(msg) returns an index for the 

message

receive_message(msg, index)

The handler generates each index as a 
tuple: (monotonically increasing int, random 

64-bit tiebreaker)



  

CausalDict: Interface

Three components:
1. Complete standard python dict interface
2. CausalObject interface

- Requires that CausalDict constructor 
take a CausalHandler
3. Callbacks

- When someone else makes a change, 
the callback is triggered.



  

CausalDict: Implementation
2 Messages:
(ADD, key, value), index
(DELETE, key), index

ADD:
if not key in ind or ind[key] < index:

d[key] = value; ind[key] = index

DELETE:
if not key in ind or ind[key] < index:

del d[key]; ind[key] = index

DELETE works even if it arrives before ADD



  

CausalDict: Implementation

CausalDict.get_history() returns a 
serialization including both d and ind.

CausalDict can forget deleted values, but 
not deleted keys.
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