Cerebro: Presence Protocol for Large Mesh Networks

Polychronis Ypodimatopoulos Viral Communications group MIT Media Laboratory

April 2008

Project goal

 Organize the presence, profile and social interaction of humans and objects in the same physical area and make this information accessible and useful

Presence Protocol Overview

 A node receives presence beacons from its neighbors, eliminates duplicate information, creates a new beacon that combines information the node already has with information it received and broadcasts a new beacon to its own neighbors.

Beacon Frame contents

Beacon Frame contents

Presence table at A:

Node ID	Witness	Distance
В	Α	1
С	В	1
С	Α	2
D	В	3
E	В	3
F	В	3
G	В	3
Н	В	3
Н	Α	5

Beacon Frame contents

Presence table at B:

Node ID	Witness	Distance
Α	В	1
С	В	1
D	С	2
E	С	2
F	С	2
G	С	2
Н	С	2
Н	В	2.5
e	A	3

Presence Protocol

- 1) Wait for a period T for beacons from neighboring nodes
- 2) For every beacon received:
 - ✓ For every entry in beacon:
 - if it is about the current node, or the current node is the witness, or the the serial number is not newer than the existing one, discard it!
 - if node/witness pair exists in presence table update number of arrivals and next arrival estimate both for node and witness
 - else add new entry in the table
- 3) Eliminate stale entries in presence table (ie. entries where the next arrival estimate has lapsed)
- 4) Create a new beacon using the minimum distances to each node in presence table
- 5) Broadcast beacon to neighbors

Arrival estimates

- 1) Count arrivals over time period T.
- 2) Formulate a Poisson arrival rate (assuming arrivals are independent events)
- 3) Estimate time of next arrival with 90% accuracy

Example:

For T=1sec, accuracy=90%, next arrival in 2.3sec

For T=1sec, accuracy=100%, next arrival in infinity (!)

Proposed solution: Cerebro

Multiple mesh networks tunneled together form a "Parallel Internet"

Features

- Achieving scalability "on a diet": Connected 100 nodes in mesh network using a single frame per node, per 10 seconds (15kb/sec in the worst case)
- Adjustable beacon rate based on node mobility

```
Overhead = N*B/T = 15*N^2/T = 15*N/t, T = N/t, t = 10Hz
```

- Different beacon rates in different areas of the mesh network, according to node concentration
- Portability: Cerebro runs on x86, OLPC XO, Nokia N800 and ARM-based embedded computers (python)
- Routing protocol for communication with any other node in the network

Numbers 1/2

Numbers 2/2

Cerebro: 1Mbps (broadcast) simultaneous transfer.

TCP/IP: sequential, 10Mbps (actual) transfer is assumed to target nodes.

Interfacing with Cerebro

- Based on DBus
- Methods currently with DBus interface:

```
register: register activities/appspush_data(destinations, data, port)onNodeArrival(node_array)
```

Methods without DBus interface (yet):

```
•set_status_info, get_status_info
•request_data(dest, port, request="")
•request_multicast_data(destinations, port, request="")
•push_multicast_data(destinations, port, data)
•handle_new_req(src, port, req_payload)
•handle_new_data(data, fhash, src, port)
•onNodeLeave
```

Demo (or Die!)

- Chat
- /tree: shows network tree rooted at your XO
- /sendfile
- /getstats
- /savestats